Abstract
A good echo cancellation algorithm should have a fast convergence rate, small steady-state residual echo, and less implementation cost. The normalized least mean square (NLMS) adaptive filtering algorithm may not achieve this goal. We show that using the Gabor expansion is a way to achieve this goal. For direct digital signal processing compatibility the Gabor expansion introduced in this paper is for discrete-time signals, although the Gabor expansion also can be used for continuous-time signals. The Gabor expansion can be defined as a discrete-time signal representation in the joint time-frequency domain of a weighted sum of the collection of functions (known as the synthesis functions). There are several design issues in the echo canceller based on the Gabor expansion: the design of the analysis functions for the far-end speech, the design of the analysis functions for the near-end signal containing the echo plus the near-end speech, the design of the adaptive filters in the subsignal path, and the design of the synthesis functions. All the adaptive filters are designed using identical NLMS adaptive filtering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.