Abstract

Gabidulin codes are the first general construction of linear codes that are maximum rank distance (MRD). They have found applications in linear network coding, for example, when the transmitter and receiver are oblivious to the inner workings and topology of the network (the so-called incoherent regime). The reason is that Gabidulin codes can be used to map information to linear subspaces, which in the absence of errors cannot be altered by linear operations, and in the presence of errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in distributed coding and distributed systems, one is led to the design of error correcting codes whose generator matrix must satisfy a given support constraint. In this paper, we give necessary and sufficient conditions on the support of the generator matrix that guarantees the existence of Gabidulin codes and general MRD codes. When the rate of the code is not very high, this is achieved with the same field size necessary for Gabidulin codes with no support constraint. When these conditions are not satisfied, we characterize the largest possible rank distance under the support constraints and show that they can be achieved by subcodes of Gabidulin codes. The necessary and sufficient conditions are identical to those that appear for MDS codes which were recently proven in [1], [2] in the context of settling the GM-MDS conjecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.