Abstract

Hundred-meter wide cumulate bodies and decimetric dykelets of gabbro-norites are widespread within the distal ophiolitic peridotites from the Jurassic Ligure-Piemontese oceanic basin, now emplaced in the Alpine–Apennine orogenic system. These peridotites derived from the sub-continental mantle of the pre-Triassic Europe–Adria lithosphere and underwent profound modifications of their structural and compositional characteristics via melt–rock interaction during diffuse percolation by porous flow of upwelling asthenospheric melts. Gabbro-norite cumulates show the peculiar association of high forsteritic olivine, high-Mg# clinopyroxenes and orthopyroxenes and high anorthitic plagioclase with respect to mineral compositions in common ophiolitic and oceanic MORB gabbros. Abundance and early crystallization of magnesian orthopyroxene suggests that parental magmas of the gabbro-noritic cumulates were relatively silica-rich basaltic liquids. Clinopyroxenes and plagioclase have anomalously low Sr and LREE, resulting in highly fractionated C1-normalized LREE patterns in clinopyroxenes and negatively fractionated C1-normalized LREE patterns in plagioclases. Modal mineralogy and mineral major and trace element compositions indicate that these gabbro-norites crystallized from MORB-type basaltic liquids that were strongly depleted in Na, Ti, Zr, Sr and other incompatible trace elements relative to any erupted liquids of MORB-type ophiolites and modern oceanic lithosphere. Computed melt compositions in equilibrium with gabbro-norite clinopyroxenes are closely similar to depleted MORB-type single melt increments after 5–7% of fractional melting of a DM asthenospheric mantle source under spinel-facies conditions. Present knowledge on the ophiolitic peridotites of Monte Maggiore indicate that they were formed by interaction of lithospheric mantle protoliths with depleted, MORB-type single melt increments produced by the ascending asthenosphere. Their composition was progressively modified from olivine-saturated to orthopyroxene-saturated by the early reactive melt–peridotite interaction (i.e., pyroxene dissolution and olivine precipitation). Gabbro-norite cumulates marked the change from diffuse porous flow percolation to intrusion and crystallization when cooling by conducive heat loss became dominant on heating by melt percolation. Progressive upwelling and cooling of the host peridotite during rifting caused transition to more brittle conditions and to hydration and serpentinization. The Monte Maggiore peridotite body was then intruded along fractures by variably evolved, Mg–Al- to Fe–Ti-rich gabbroic dykes. Computed melt compositions in equilibrium with clinopyroxenes from less evolved gabbro dykes are closely similar to aggregated MORBs. The event of gabbro intrusion indicates that aggregated MORB-type liquids: i) migrated through and stagnated in the mantle lithosphere and ii) underwent evolution into shallow ephemeral magma chambers to form the parental magmas of the gabbroic dykes and the basaltic lava flows of the Ligurian oceanic crust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call