Abstract
Operational scheduling of manufacturing industry is of paramount importance for cost-effective and competitive operation for survival in the market. The operational scheduling encompasses a wide range of scheduling models and many attempts have been made to solve them using analytical, heuristic and artificial intelligence based approaches but no robust solution is yet available to tackle the diverse range of scheduling models. Recent trend shows that Genetic Algorithm (GA)-based solutions are popular because of their suitability to the combinatorial nature of the scheduling problem. In this paper, a GA-based scheduling system is presented where a novel combination of recently introduced crossover scheme for job based chromosome representation with Stochastic Universal Selection (SUS), simple mutation of exchange of genes and a heuristic for evaluation of chromosomes is proposed which is easy to code and robust enough to deal with flow shop as well as job shop scheduling problem. The system is validated through case studies from real world scheduling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.