Abstract
This paper presents a robust output tracking control design method for a linear brushless DC motor with modeling uncertainties. Two frequency-domain specifications directly related to the mixed sensitivity function and control energy consumption are imposed to ensure stability and performance robustness. With regard to time-domain specifications, the rise time, maximum overshoot and steady-state error of the step response are considered. A generalized two-parameters proportional, integral, and derivative (PID) control framework is developed via a genetic searching approach ensuring the specifications imposed. The proposed design method is intuitive and practical that offers an effective way to implement simple but robust solutions covering a wide range of plant perturbation and, in addition, provides excellent tracking performance without resorting to excessive control. Extensive experimental and numerical results for a linear brushless motor confirm the proposed control design approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.