Abstract

Intelligent digital redesign involves converting a continuous-time fuzzy-model-based controller into an equivalent discrete-time counterpart for the digital control of continuous-time nonlinear systems by using the Takagi-Sugeno (TS) fuzzy models. In this paper, the authors present a new global state-matching intelligent digital redesign method for nonlinear systems by using genetic algorithms (GAs). More precisely, the intelligent digital redesign problem is converted to an equivalent optimization problem, and then GAs are adopted to find a solution. The search space, in which each problem variable is defined for GAs, are systematically obtained by the interval arithmetic operations. The proposed method results in global matching of the states of the analogously controlled system with those of the digitally controlled system while the conventional intelligent digital redesign method does not. The Chen's chaotic system is used as an illustrative example to show the effectiveness and the feasibility of the developed method. The proposed method provides a new approach for the digital redesign of a class of fuzzy-model-based controllers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.