Abstract

In the present work, we have characterized the maturation of the GABAergic system in mammalian retina. Immunoreactivity for GABA, GAD (glutamic acid decarboxylase, EC 4.1.1.15) -65 and -67 in the adult rat retina was localized in cells in the inner nuclear and ganglion cell layers. This pattern was established around postnatal day 8 and included transient GABA and GAD-67 expression in horizontal cells. GAD activity was very low at P1 and P4, increasing after P8, reaching maximal activity by P21 and decreasing to attain adult values by P30. GABA content was approximately constant from P1 to P13, increasing thereafter to reach adult levels. GAD protein content increased progressively with postnatal development and the two isoforms could be distinguished at P8.The disparity between retinal GABA content vs presence and activity of the synthesizing enzyme, led us to investigate the alternative pathway for GABA synthesis that utilizes putrescine as a substrate. Highest levels of ornithine decarboxylase activity (the limiting step for putrescine synthesis) were found between P1 and P4, decreasing to very low levels after P13. The same pattern was observed for putrescine content in the retina. Highest amounts were found at P1, that decreased and remained constant after P13. Additionally, approximately 40% of tritiated putrescine incorporated by P1, P4 and adult retinas was converted into GABA.Our results suggest the existence of two different sources of GABA in mammalian retina, one that uses glutamate as a precursor and predominates in the mature nervous system and another that utilizes putrescine and is present transiently at early developmental stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.