Abstract

Neuraxial modulation, including spinal cord stimulation, reduces cardiac sympathoexcitation and ventricular arrhythmogenesis. There is an incomplete understanding of the molecular mechanisms through which spinal cord stimulation modulates cardiospinal neural pathways. The authors hypothesize that spinal cord stimulation reduces myocardial ischemia-reperfusion-induced sympathetic excitation and ventricular arrhythmias through γ-aminobutyric acid (GABA)-mediated pathways in the thoracic spinal cord. Yorkshire pigs were randomized to control (n = 11), ischemia-reperfusion (n = 16), ischemia-reperfusion plus spinal cord stimulation (n = 17), ischemia-reperfusion plus spinal cord stimulation plus γ-aminobutyric acid type A (GABAA) or γ-aminobutyric acid type B (GABAB) receptor antagonist (GABAA, n = 8; GABAB, n = 8), and ischemia-reperfusion plus GABA transaminase inhibitor (GABAculine, n = 8). A four-pole spinal cord stimulation lead was placed epidurally (T1 to T4). GABA modulating pharmacologic agents were administered intrathecally. Spinal cord stimulation at 50 Hz was applied 30 min before ischemia. A 56-electrode epicardial mesh was used for high-resolution electrophysiologic recordings, including activation recovery intervals and ventricular arrhythmia scores. Immunohistochemistry and Western blots were performed to measure GABA receptor expression in the thoracic spinal cord. Cardiac ischemia led to myocardial sympathoexcitation with reduction in activation recovery interval (mean ± SD, -42 ± 11%), which was attenuated by spinal cord stimulation (-21 ± 17%, P = 0.001). GABAA and GABAB receptor antagonists abolished spinal cord stimulation attenuation of sympathoexcitation (GABAA, -9.7 ± 9.7%, P = 0.043 vs. ischemia-reperfusion plus spinal cord stimulation; GABAB, -13 ± 14%, P = 0.012 vs. ischemia-reperfusion plus spinal cord stimulation), while GABAculine alone caused a therapeutic effect similar to spinal cord stimulation (-4.1 ± 3.7%, P = 0.038 vs. ischemia-reperfusion). The ventricular arrhythmia score supported these findings. Spinal cord stimulation during ischemia-reperfusion increased GABAA receptor expression with no change in GABAB receptor expression. Thoracic spinal cord stimulation reduces ischemia-reperfusion-induced sympathoexcitation and ventricular arrhythmias through activation of GABA signaling pathways. These data support the hypothesis that spinal cord stimulation-induced release of GABA activates inhibitory interneurons to decrease primary afferent signaling from superficial dorsal horn to sympathetic output neurons in the intermediolateral nucleus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.