Abstract

Social deficits are one of the major symptoms of psychiatric disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, the underlying mechanism remains ill-defined. Here, we focused on the anterior cingulate cortex (ACC), a brain region that is related to social behaviors, of mice that received poly(I:C)-induced maternal immune activation. Offspring born from poly(I:C)-treated dams exhibited social deficits in a three-chamber task at juvenile stages. Using whole-cell patch clamp recordings, we found that layer 2/3 pyramidal cells were hyperactive in acute ACC slices prepared from poly(I:C)-treated mice compared to those from saline-treated mice. The hyperexcitation was associated with a reduction in inhibitory synapse activity. Local injection of the GABAA receptor enhancer clonazepam into the ACC of poly(I:C)-treated mice restored the social behaviors of the mice. These results suggest that the balanced excitability of ACC neurons is essential for social ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.