Abstract

Pacinian corpuscles (PCs) are tactile receptors composed of a nerve ending (neurite) that is encapsulated by layers of lamellar cells. PCs are classified as primary mechanoreceptors because there is no synapse between the transductive membrane and the site of action-potential generation. These touch receptors respond in a rapidly adapting manner to sustained pressure (indentation or displacement), which until now was believed to be attributable solely to the mechanical properties of the capsule. However, evidence of positive immunoreactivity for GABA receptors on the neurite, as well as evidence for gene expression of synaptobrevin in the lamellar cells led to the hypothesis that GABAergic inhibition originating from the lamellar cells is involved in the rapid adaptation process of PCs. Electrophysiological data from isolated PCs demonstrates that, in the presence of either gabazine or picrotoxin (GABA receptor antagonists), many action potentials appear during the static portion of a sustained indentation stimulus (similar to slowly adapting receptors) and that these "static" spikes completely disappear in the presence of GABA. It was consequently hypothesized that glutamate, released by either the neurite itself or the lamellar cells, caused these action potentials. Indeed, the glutamate receptor blocker kynurenate either decreased or totally eliminated the static spikes. Together, these results suggest that GABA, emanating from the modified Schwann cells of the capsule, inhibits glutamatergic excitation during the static portion of sustained pressure, thus forming a "mechanochemical," rather than purely mechanical, rapid adaptation response. This glial-neuronal interaction is a completely novel finding for the PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.