Abstract

The transduction mechanisms underlying presynaptic GABAB receptor-mediated inhibition of transmitter release have been characterized for a variety of synapses in the central nervous system (CNS). These studies have suggested a range of transduction mechanisms, including a role for second messengers such as protein kinases A (PKA) and C (PKC). In the present study, we have examined the intracellular signalling pathways underlying baclofen-induced inhibition of GABA release from terminals synapsing onto rat basalis of Meynert neurons using patch-clamp recordings. Baclofen, a selective GABAB receptor agonist, reversibly decreased both evoked and spontaneous, miniature, GABAergic inhibitory postsynaptic currents (eIPSCs and mIPSCs, respectively). Such baclofen actions were completely abolished by CGP55845A, a selective GABAB receptor antagonist, and by staurosporine, a non-selective PKA and PKC inhibitor. The mIPSC frequency was still decreased by baclofen even in the presence of 4 AP, a K+ channel blocker, and Cd2+, a voltage-dependent calcium channel blocker. Pharmacological activation or inhibition of PKC activity affected basal GABA release and mildly affected the response to baclofen. Inhibition of the cAMP/PKA cascade also affected basal GABA release and, in a subset of neurons, occluded the effects of baclofen, suggesting that the GABAB receptor-mediated inhibitory action on GABA release was mediated via decreases in PKA activity. In addition, PKA inhibition occluded the effects of PKC modulation on both basal GABA release and on the response to baclofen. Our results characterize the transduction pathway of baclofen at these nucleus basalis of Maynert (nBM) synapses and show, for the first time, some cross-talk between the cAMP/PKA and PKC pathways in mammalian presynaptic nerve terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call