Abstract

AimsWe examined the effect of γ-aminobutyric acid (GABA)B receptor activation on astrocyte phenotype changes induced by trimethyltin (TMT) in the dentate gyrus of mice. Main methodsMale C57BL/6N mice received TMT (2.6 mg/kg, i.p.), and the expression of GABAB receptors was evaluated in the hippocampus. The GABAB receptor agonist baclofen (2.5, 5, or 10 mg/kg, i.p. × 5 at 12-h intervals) was administered 3–5 days after TMT treatment, and the expression of Iba-1, GFAP, and astrocyte phenotype markers was evaluated 6 days after TMT. SL327 (30 mg/kg, i.p.), an extracellular signal-related kinase (ERK) inhibitor, was administered 1 h after each baclofen treatment. Key findingsTMT insult significantly induced the astroglial expression of GABAB receptors in the dentate molecular layer. Baclofen significantly promoted the expression of S100A10, EMP1, and CD109, but not that of C3, GGTA1, and MX1 induced by TMT. In addition, baclofen significantly increased the TMT-induced expression of p-ERK in the dentate molecular layer. Interestingly, p-ERK was more colocalized with S100A10 than with C3 after TMT insult, and a significant positive correlation was found between the expression of p-ERK and S100A10. Consistently, SL327 reversed the effect of baclofen on astrocyte phenotype changes. Baclofen also enhanced the TMT-induced astroglial expression of glial cell-derived neurotrophic factor (GDNF), an anti-inflammatory astrocytes-to-microglia mediator, and consequently attenuated Iba-1 expression and delayed apoptotic neuronal death. SignificanceOur results suggest that GABAB receptor activation increases S100A10-positive anti-inflammatory astrocytes and astroglial GDNF expression via ERK signaling after TMT excitotoxicity in the dentate molecular layer of mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call