Abstract
Type-A receptors for the neurotransmitter GABA (gamma-aminobutyric acid) are ligand-gated chloride channels that mediate inhibitory neurotransmission. Each subunit of the pentameric receptor protein has ligand-binding sites in the amino-terminal extracellular domain and four membrane-spanning regions, one of which forms a wall of the ion channel. Each subunit also has a large intracellular loop that may be a target for protein kinases and be required for subcellular targeting and membrane clustering of the receptor, perhaps by anchoring the receptor to the cytoskeleton. Neurotransmitter receptors need to be positioned in high density in the cell membrane at sites postsynaptic to nerve terminals releasing that neurotransmitter. Other members of the superfamily of ligand-gated ion-channel receptors associate in postsynaptic-membrane clusters by binding to the proteins rapsyn or gephyrin. Here we identify a new cellular protein, GABA(A)-receptor-associated protein (GABARAP), which can interact with the gamma2 subunit of GABA(A) receptors. GABARAP binds to GABA(A) receptors both in vitro and in vivo, and co-localizes with the punctate staining of GABA(A) receptors on cultured cortical neurons. Sequence analysis shows similarity between GABARAP and light chain-3 of microtubule-associated proteins 1A and 1B. Moreover, the N terminus of GABARAP is highly positively charged and features a putative tubulin-binding motif. The interactions among GABA(A) receptors, GABARAP and tubulin suggest a mechanism for the targeting and clustering of GABA(A) receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.