Abstract

Glial cells are known for their role in development and expression of GABA receptors. However, there seems to be a lack of in situ studies characterizing GABA receptor expression and function in glial cells from early development to adulthood. Consequently, we examined GABA receptor expression on rat hippocampal glial cells in both neonatal and adult slices using the whole-cell patch-clamp technique. Glial cells in adult and neonatal slices exhibit responses to muscimol (1 mM; GABAA), but not baclofen (1 mM; GABAB), demonstrating that receptor electrophysiology remains qualitatively similar in glial cells throughout development. Adult muscimol current densities however, do show a decrease in size to approximately 36% of the neonatal response. Muscimol responses were found to be sensitive to bicuculline, suggesting that they are mediated by GABAA receptors. In addition to receptor currents, muscimol causes a concomitant long-term blockade of outward K+ currents in glial cells of both neonatal and adult slices. Comparisons of percentage peak blockade in adult and neonatal glial cells show no significant difference. However, when comparing average absolute conductance blockade, we see that adult glial cells display a significantly smaller response than neonatal and cultured astrocytes. Therefore, although the percentage blockade of outward currents remains consistent throughout development, neonatal glial cells display a larger physiological effect. Thus, it can be concluded that, although the complex GABA response in glial cells is affected by development, the receptor current and secondary blockade are a basic mechanism for neuronal-glial interaction throughout life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.