Abstract

The possibility that fish experience pain has been denied based on the absence of the neural substrates to support this “experience”. In this context, the identification of brain regions involved in nociception modulation could provide important insights regarding the processing of nociceptive information in fish. Our study evaluated the participation of the GABAA-benzodiazepine receptor in the dorsomedial (Dm) telencephalon in restraint-induced antinociception in the fish Leporinus macrocephalus through the microinjection of the anxiolytic drug midazolam. The microinjection of midazolam in the Dm did not alter the nocifensive response; however, this drug did block the inhibition of the nocifensive response to formaldehyde promoted by restraint stress. The fish that received midazolam (40nmol) microinjection prior to restraint (3 or 5min), followed by subcutaneous injection with formaldehyde presented a higher distance traveled than the fish that received saline microinjection. This effect might reflect the specific action of midazolam on benzodiazepine receptors in the Dm telencephalon, as pre-treatment with flumazenil, a benzodiazepine receptor antagonist, inhibited the effects of this drug. In the present study, we present the first evidence demonstrating a role for the dorsomedial telencephalic region in the modulation of stress-induced antinociception in fish, revealing new perspectives in the understanding of nociceptive information processing in this group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call