Abstract

A consistent organizational feature of auditory cortex is a clustered representation of binaural properties. Here we address two questions. What is the intrinsic organization of binaural clusters and to what extent does intracortical processing contribute to binaural representation. We address these issues in the auditory cortex of the pallid bat. The pallid bat listens to prey-generated noise transients to localize and hunt terrestrial prey. As in other species studied, binaural clusters are present in the auditory cortex of the pallid bat. One cluster contains neurons that require binaural stimulation to be maximally excited, and are commonly termed predominantly binaural (PB) neurons. These neurons do not respond to monaural stimulation of either ear but show a peaked sensitivity to interaural intensity differences (IID) centered near 0 dB IID. We show that the peak IID varies systematically within this cluster. The peak IID is also correlated with the best frequency (BF) of neurons within this cluster. In addition, the IID selectivity of PB neurons is shaped by intracortical GABAergic input. Iontophoresis of GABA(A) receptor antagonists on PB neurons converts a majority of them to binaurally inhibited (EI) neurons that respond best to sounds favoring the contralateral ear. These data indicate that the cortex does not simply inherit binaural properties from lower levels but instead sharpens them locally through intracortical inhibition. The IID selectivity of the PB cluster indicates that the pallid bat cortex contains an increased representation of the frontal space that may underlie increased localization accuracy in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call