Abstract

Focal cerebral lesions in rat brain induced by photothrombosis lead to an impaired inhibitory neurotransmission. A reduced gamma-aminobutyric acid (GABA)-mediated inhibition has been revealed by electrophysiological recordings associated with a diminished immunostaining of GABA handling proteins. Changes were found in ipsi- as well as in contralateral brain areas. Inhibition is mediated by interneurons using GABA as neurotransmitter. These cells use GAD (glutamate decarboxylase) to synthesize GABA. To analyze the vulnerability of GABAergic neurons in rats with a lesioned hindlimb area, cells expressing GAD65/67 mRNA were labeled using in situ hybridization. Positive somata were counted 7 and 30 days after focal ischemia in different cortical (hindlimb cortex, frontal cortex, primary and secondary somatosensory cortex) and hippocampal subsectors (pyramidal cell layer, stratum oriens and stratum radiatum/lacunosum-moleculare). The lesioned hemispheres were compared with the intact brain sides and with control brains. GABAergic interneurons survived the injury for up to 30 days in all investigated brain regions. Therefore it is unlikely that a loss of GABAergic neurons contributes to the reduced inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.