Abstract

Gamma-aminobutyric acid (GABA) has been implicated in the regulation of reproduction, particularly in the developmental modulation of gonadotropin-releasing hormone (GnRH) secretion. GnRH neurons are innervated by GABA-containing processes, and the administration of GABA stimulates and inhibits GnRH secretion in vivo and in vitro. We have previously shown that GABA can exert both of these actions in sequence, by acting directly on immortalized GnRH neurons. While the stimulation is the result of a GABA(A) receptor-mediated depolarization of the plasma membrane, the mechanism involved in the delayed inhibition is the subject of the present investigation. GABA (1 nM-10 microM) decreased the intracellular concentration of cyclic adenosine monophosphate (cAMP) in a dose- and time-dependent fashion. This effect was blocked by bicuculline and mimicked by muscimol but not by baclofen. To analyze the effect of GABA on cellular excitability, we used fura-2 loaded GT1-7 cells. Activation of voltage-sensitive calcium channels by high K+-induced depolarization (35 mM) increased [Ca2+]i. GABA (10 microM) and muscimol (10 microM) reduced the amplitude of K+-induced [Ca2+]i transients. This inhibition was blocked by forskolin (20 microM) or 8-Br-cAMP (1 mM). Altogether, these results show that GABA(A) receptors mediate a sustained inhibitory effect of GABA on GnRH neurons, and suggest the involvement of the cAMP pathway decreasing cellular excitability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call