Abstract

The temporal convergence of neuronal signals is commonly considered as a likely prerequisite for enhanced neuronal excitability underlying the induction of associative memories. Here we report that transmitter application on presynaptic terminals of the Hermissenda Type B photoreceptors, when paired with depolarization, results in a potentiation of the excitability of the B-cell which derives from an increase in input resistance across the B-cell soma membrane. Pressure microapplication of gamma-aminobutyric acid (GABA) (12.5 microM) on the terminal branches of the Hermissenda Type B photoreceptors results in the fast (less than 1 s) activation of an inward Cl- conductance, characterized by a decrease in neuronal membrane resistance and an accompanying hyperpolarization (3-6 mV) of the B-cell. A slower effect of GABA, characterized by a slight depolarization (2-4 mV) and increase in resistance was observed approximately 2 min after GABA application. Following bath application of the Cl- channel blocker picrotoxin (100 microM), this increase in resistance was observed within 20 s of GABA application, suggesting that it was normally masked by the faster Cl- conductance. The magnitude of the resistance increase in response to GABA was enhanced when the B-cell was held at depolarized membrane potentials (-40 to -20 mV), but was eliminated if Ca2+ was removed from the extracellular bath, or if the non-specific protein kinase inhibitor H7 (100 microM) was added to the extracellular bath. In a final experiment, GABA application was paired with a transient (10 s) depolarization of the B-cell (to -20 mV).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call