Abstract

We have found new evidence for gamma-aminobutyric acid (GABA)-induced intrinsic optical changes associated with a voltage-sensitive dye signal in the early embryonic chick brain stem slice. The slices were prepared from 8-day-old embryos, and they were stained with a voltage-sensitive dye (NK2761). Pressure ejection of GABA to one site within the preparation elicited optical changes. With 580-nm incident light, two components were identified in the GABA-induced optical change. The first component was wavelength dependent, whereas the second, slower change was independent of wavelength. Comparison with the known action spectrum of the dye indicates that the first component reflects a depolarization of the membrane and that the second, slow component is a light-scattering change resulting from cell shrinkage coupled with the depolarization. Similar optical changes also were induced by glycine, although the amplitude of both the first and second signals was much smaller than for GABA. The optical changes induced by GABA persisted in the presence of picrotoxin and 2-hydroxysaclofen, suggesting that these optical responses include a novel GABA response, which has been termed GABAD in our previous reports.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call