Abstract

Metamorphosis, a widespread life history strategy in metazoans, allows dispersal and use of different ecological niches through a dramatic body change from a larval stage [1, 2]. Despite its conservation and importance, the molecular mechanisms underlying its initiation and progression have been characterized in only a few animal models. In this study, through pharmacological and gene functional analyses, we identified neurotransmitters responsible for metamorphosis of the ascidian Ciona. Ciona metamorphosis converts swimming tadpole larvae into vase-like, sessile adults. Here, we show that the neurotransmitter GABA is a key regulator of metamorphosis. We found that gonadotropin-releasing hormone (GnRH) is a downstream neuropeptide of GABA. Although GABA is generally thought of as an inhibitory neurotransmitter, we found that it positively regulates secretion of GnRH through the metabotropic GABA receptor during Ciona metamorphosis. GnRH is necessary for reproductive maturation in vertebrates, and GABA is an important excitatory regulator of GnRH in the hypothalamus during puberty [3, 4]. Our findings reveal another role of the GABA-GnRH axis in the regulation of post-embryonic development in chordates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.