Abstract
The Hering-Breuer reflex is one of the fundamental respiratory reflexes and is mediated by second-order relay neurons of the slowly adapting lung stretch receptors. These neurons, which are called pump cells, are located in the nucleus tractus solitarii and include a population of inhibitory neurons. We aimed to determine which transmitter, GABA or glycine, the inhibitory pump cells use. In addition, we examined whether or not second-order relay neurons of the rapidly-adapting lung stretch receptors (RAR-cells), whose excitatory or inhibitory nature is not known, use these inhibitory neurotransmitters. In Nembutal-anesthetized, neuromuscularly blocked and artificially ventilated rats, we labeled pump cells ( n=33) and RAR-cells ( n=26) with Neurobiotin and processed the tissues for detection of mRNA encoding either glutamic acid decarboxylase isoform 67 (GAD67) or glycine transporter 2 (GLYT2) using in situ hybridization. The pump cells were located in the interstitial nucleus and its vicinity and the RAR-cells in the commissural subnucleus. The majority (64%) of the pump cells examined for GAD67 mRNA and many (26%) of the pump cells examined for GLYT2 mRNA expressed respective mRNAs. Of the eight pump cells in which both mRNAs were double-detected, three expressed both mRNAs and one expressed GAD67 mRNA but not GLYT2 mRNA, the other four expressing neither mRNAs. On the other hand, RAR-cells expressed neither GAD67 mRNA nor GLYT2 mRNA. The results suggest that the inhibitory pump cells are basically GABAergic and some of them may corelease GABA and glycine, and that RAR-cells are neither GABAergic nor glycinergic. These findings expand our understanding of the networks of lung receptor-mediated reflexes including the Hering-Breuer reflex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.