Abstract

AbstractGamma‐aminobutyric acid (GABA), a ubiquitously present non‐proteinogenic amino acid, has recently emerged as a key regulator of growth and development in plants during normal as well as challenging environmental conditions. GABA biosynthesis has been reported at multiple stages of plant development, particularly during vegetative and reproductive stages and in response to stress conditions. Accumulating evidence has highlighted the crucial roles of various cell cycle regulators such as type‐D cyclins and CDK;A1, transcription factors such as E2Fa, as well as Ca2+/Calmodulin proteins in GABA biosynthesis in plants. GABA is known to improve stress tolerance by improving photosynthetic activity, C/N metabolism, stomatal conductance, and stress‐induced reactive oxygen species (ROS) detoxification. Here, we have reviewed recent studies that have explored the novel roles of GABA in plants with a focus on plant development and stress resilience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.