Abstract
Previous findings have indicated the presence of local circuit neurons in the lateral cervical nucleus (LCN). An immunohistochemical study with gamma-aminobutyric acid (GABA) antiserum was therefore performed both to investigate whether GABA-immunoreactive neurons are present in the LCN, and if so, to compare their characteristics with those previously assigned to probable internuncial neurons in the nucleus. The fine structure and synaptology of GABA-positive boutons in the LCN were also studied. Transversely cut sections from the upper cervical spinal cord of three cats were processed for GABA immunohistochemistry with the free-floating PAP technique. On light microscopic examination immunoreactive neurons were observed within the ventromedial half of the LCN. Their total number was estimated to be 42.5 +/- 11.7 in the entire LCN on one side of the cervical spinal cord, but this may have been an underestimation, as the penetration by the antisera was limited. The labeled neurons were small and had a relatively large nucleus and a low bouton covering ratio. In their number, localization, and ultrastructural appearance the GABA-positive neurons closely resembled the population of neurons previously suggested to be local circuit neurons. Immunoreactive bouton-sized puncta were scattered throughout the LCN. Ultrastructural examination showed labeled terminals with a mean sectional area of 0.85 micron 2 and a relatively high density of synaptic vesicles. The vast majority of GABA-positive terminals were in contact with dendrites and only a minority had synaptic contact with cell bodies. No axoaxonal synapses were observed. The GABA-positive boutons probably derive at least partly from the observed GABA-positive neurons, but there is also a possibility of extrinsic GABAergic input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.