Abstract

We assessed the role of gamma-aminobutyric acid (GABA) as a potential causative agent of hypoxic respiratory depression by monitoring the response of the phrenic neurogram to systemic infusion of the GABA antagonist bicuculline (0.01 mg.kg-1.min-1) under control conditions and during isocapnic brain hypoxia produced by CO inhalation in separate groups of anesthetized, glomectomized, vagotomized, paralyzed, and ventilated cats with blood pressure held constant. The maximum effect of bicuculline in subseizure doses in control cats was to increase minute phrenic activity to 151 +/- 14% of preinfusion values. Infusion was continued until seizure activity was seen in the electroencephalogram. A 53% decrease of arterial O2 content resulted in a marked reduction of both peak phrenic amplitude and phrenic firing frequency to 16 and 64% of control values, respectively. Infusion of bicuculline while the level of hypoxia was maintained constant restored both peak phrenic amplitude and phrenic firing frequency to prehypoxic levels. The maximum effect of bicuculline was to increase minute phrenic activity to 123 +/- 13% of the prehypoxic value. These results suggest that although GABA has only a modest role in determining the output of the control phrenic neurogram, a significant portion of the phrenic depression that occurs during hypoxia can be attributed to inhibition of respiratory neurons by GABA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call