Abstract

GABA, a major inhibitory neurotransmitter of the brain, is also present at high concentration in pancreatic islets. Current evidence suggests that within islets GABA is secreted from beta-cells and regulates the function of mantle cells (alpha- and delta-cells). In the nervous system GABA is stored in, and secreted from, synaptic vesicles. The mechanism of GABA secretion from beta-cells remains to be elucidated. Recently the existence of synaptic-like microvesicles has been demonstrated in some peptide-secreting endocrine cells. The function of these vesicles is so far unknown. The proposed paracrine action of GABA in pancreatic islets makes beta-cells a useful model system to explore the possibility that synaptic-like microvesicles, like synaptic vesicles, are involved in the storage and release of non-peptide neurotransmitters. We report here the presence of synaptic-like microvesicles in beta-cells and in beta-cells. Some beta-cells in culture were found to extend neurite-like processes. When these were present, synaptic-like microvesicles were particularly concentrated in their distal portions. The GABA synthesizing enzyme, glutamic acid decarboxylase (GAD), was found to be localized around synaptic-like microvesicles. This was similar to the localization of GAD around synaptic vesicles in GABA-secreting neurons. GABA immunoreactivity was found to be concentrated in regions of beta-cells which were enriched in synaptic-like microvesicles. These findings suggest that in beta-cells synaptic-like microvesicles are storage organelles for GABA and support the hypothesis that storage of non-peptide signal molecules destined for secretion might be a general feature of synaptic-like microvesicles of endocrine cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.