Abstract

Tourette syndrome (TS) is characterized by presence of chronic, fluctuating motor and phonic tics. The underlying neurobiological basis for these movements is hypothesized to involve cortical-striatal-thalamo-cortical (CSTC) pathways. Two major neurotransmitters within these circuits are γ-aminobutyric acid (GABA) and glutamate. Seventy-five participants (32 with TS, 43 controls) ages 5–12 years completed 1H MRS at 7T. GABA and glutamate were measured in dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex (VMPFC), premotor cortex (PMC), and striatum, and metabolites quantified using LCModel. Participants also completed neuropsychological assessment emphasizing inhibitory control. Scans were well tolerated by participants. Across ROIs combined, glutamate was significantly higher in the TS group, compared to controls, with no significant group differences in GABA observed. ROI analyses revealed significantly increased PMC glutamate in the TS group. Among children with TS, increased PMC glutamate was associated with improved selective motor inhibition; however, no significant associations were identified between levels of glutamate or GABA and tic severity. The dopaminergic system has long been considered to have a dominant role in TS. Accumulating evidence, however, suggests involvement of other neurotransmitter systems. Data obtained using 1H MRS at 7T supports alteration of glutamate within habitual behavior-related CSTC pathways of children with TS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call