Abstract

Alloyed semiconductor nanowires (NWs) are of great interest for next-generation integrated optoelectronic nanodevices owing to their tunable band gap and emission wavelength. In this study, we synthesized the GaAsSe ternary alloy nanowires (NWs) with various compositions between GaAs and Ga2Se3 using chemical vapor transport method. The band gap was continuously tuned in the range of 1.5–2.1 eV because of the completely miscible solid solution at all compositions. The alloy NWs (including Ga2Se3) consisted of a cubic phase with the [011] growth direction, in contrast with the GaAs NWs grown along the [111] direction. In particular, the GaAs1–xSex (x = 0.3) alloy NWs were grown from Ga-rich Au nanoparticles such as cubic-phase AuGa2 and had a defect-free single-crystalline nature. X-ray photoelectron spectroscopy analysis reveals much less surface oxide layers for x = 0.3, suggesting that Se incorporation at this composition effectively diminishes the surface defects. We fabricated photodetectors using the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.