Abstract

Optimum conditions for the growth of the GaAs1 − xSbx/GaAs heterostructures by the method of molecular-bean epitaxy are determined; it is shown that effective long-wavelength photoluminescence at T = 300 K can be obtained at wavelengths as long as λ = 1.3 μm by increasing the antimony incorporation. As the excitation power is increased, the appearance of a short-wavelength line (in addition to a shift of a photoluminescence maximum to shorter wavelengths characteristic of the type II heterojunctions) related to direct optical transitions in the real space takes place; this relation is confirmed by the results of studying the photoluminescence spectra with subpicosecond and nanosecond time resolution in the case of pulsed excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call