Abstract

In this work, we report on the design, growth and characterization of GaAsN/AlAs/AlGaAs double barrier quantum well infrared detectors to achieve intraband absorption below 4 μm. Due to the high effective mass of N-dilute alloys, it is common for these N-containing double barrier quantum well structures to have more than one bound state within the quantum well, enabling the possibility of achieving multispectral absorption from these confined levels to the quasi-bound. Based on a transfer matrix calculation we will study the influence of the potential parameters, in particular the well width and the introduction of a GaAs spacer layer in between the N-well and the AlAs barriers. We will compare the case in which there are two confined levels with the case in which only one level is bound, like in the conventional AlGaAs/AlAs/GaAs structures. On the basis of the simulation, we have grown and characterized some N-containing double barrier detectors. Moreover, an optimization of the post-growth annealing treatments of the GaAsN quantum well structures has also been performed. Finally, room temperature absorption measurements of both as-grown and annealed samples are presented and analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.