Abstract

AbstractGaAs single‐junction and InGaP/GaAs multi‐junction thin‐film solar cells fabricated on Si substrates have great potential for high‐efficiency, low‐cost, lightweight and large‐area space solar cells. Heteroepitaxy of GaAs thin films on Si substrates has been examined and high‐efficiency GaAs thin‐film solar cells with total‐area efficiencies of 18·3% at AM0 and 20·0% at AM 1·5 on Si substrates (GaAs‐on‐Si solar cells) have been fabricated. In addition, 1‐MeV electron irradiation damage to GaAs‐on‐Si cells has been studied. The GaAs‐on‐Si cells are found to show higher end‐of‐life efficiency than the conventional GaAs cells fabricated on GaAs substrates (GaAs‐ on‐GaAs cells) under high‐fluence 1‐MeV electron irradiation of more than 1 × 1015 cm−2. The first space flight to make use of them has been carried out. Forty‐eight 2 × 2 cm GaAs‐on‐Si cells with an average AM0 total‐area efficiency of 16·9% have been evaluated in the Engineering Test Satellite No.6 (ETS‐VI). The GaAs‐on‐Si cells have been demonstrated to be more radiation‐resistant in space than GaAs‐on‐GaAs cells and 50, 100 and 200‐μm‐thick Si cells. These results show that the GaAs‐on‐Si single‐junction and InGaP/GaAs‐on‐Si multi‐junction cells have great potential for space applications. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call