Abstract

Ultrathin InP passivated GaAs non-volatile memory devices were fabricated with chemically synthesized 5 nm ZnO quantum dots embedded into ZrO2 high-k oxide matrix deposited through metal organic chemical vapor deposition. In these memory devices, the memory window was found to be 6.10 V and the obtained charge loss was only 15.20% after 105 s. The superior retention characteristics and a wide memory window are achieved due to presence of ZnO quantum dots between tunneling and control oxide layers. Room temperature Coulomb blockade effect was found in these devices and it was ascertained to be the main reason for low leakage. Electronic band diagram with program and erase operations were described on the basis of electrical characterizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.