Abstract

ABSTRACTGaAs/AlGaAs N-p-n heterojunction bipolar transistor (GaAs HBT) device and integrated circuit technology which offers key advantages over advanced silicon bipolar and III-V compound field-effect transistors is maturing towards system insertion. The TRW device and IC fabrication process, basic HBT dc and RF performance, examples of device and IC applications, and technology qualification work are presented and serves as a basis for discussing overall technology issues and impact. A relaxed 3-μm emitter-up, self-aligned base ohmic metal (SABM) HBT process and simplified molecularbeam epitaxial profiles are used for near-term producibility. The HBTs have simultaneous fT, fmax≈20–40 GHz and dc current gain ß≈50–100 at collector current density JC=3 kA/cm2 and Early voltage VA≈200–300 with capability for MSI-LSI integration levels. Versatile dc-20 GHz analog, 3–6 Gb/s digital, and 2–3 Gs/s A/D conversion functions are demonstrated with a common 3-μm SABM HBT process which facilitates single-chip multifunctional capability. Key improvements are realized over Si bipolar and GaAs-related FET (e.g. MESFET and HEMT) approaches in operational frequency, gain-bandwidth product, harmonic distortion, 1/f noise, power consumption, and size reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.