Abstract

We demonstrate GaAs-based, metal-oxide-semiconductor field-effect transistors (MOSFETs) with excellent performance using an Al2O3 gate dielectric, deposited by atomic layer deposition (ALD). This achievement is very significant because Al2O3 possesses highly desirable physical and electrical properties as a gate dielectric. These MOSFET devices exhibit extremely low gate-leakage current, high transconductance, and high dielectric breakdown strength. A short-circuit, current-gain, cutoff frequency (fT) of 14 GHz and a maximum oscillation frequency (fmax) of 25.2 GHz have been achieved from a 0.65-µm gate-length device. The interface trap density (Dit) of Al2O3/GaAs is evaluated by the hysteresis of drain-source current, Ids, versus gate-source bias, Vgs, and the frequency dispersion of transconductance, gm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.