Abstract

Heterostructure potential well barrier (PWB) diodes in GaAs/AlGaAs system operating in a similar way to Planar Doped Barrier (PDB) diodes, though exploiting a potential well to trap charge, rather than a fixed doping spike have recently been realized and reported in the literature. This paper analyses the complex operation of these devices and determines the sensitivity of the current–voltage (I–V) characteristics to various design parameters. The PWB diode displays a significant temperature sensitivity, opposite in nature to PDB temperature dependence, and this suggests the possibility of temperature stabilised hybrid designs. The active bias dependence nature of charge within the well is found to have a significant effect on the device and impacts the ideality factor, which is more bias dependent than other comparable devices such as PDBs. However, the same mechanism offers the prospect of improvement in the current asymmetry and this effect can be greatly improved upon by changing the design and shape of the potential well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.