Abstract

We demonstrate an efficient core-shell GaAs/AlGaAs nanowire photodetector operating at room temperature. The design of this nanoscale detector is based on a type-I heterostructure combined with a metal-semiconductor-metal (MSM) radial architecture, in which built-in electric fields at the semiconductor heterointerface and at the metal/semiconductor Schottky contact promote photogenerated charge separation, enhancing photosensitivity. The spectral photoconductive response shows that the nanowire supports resonant optical modes in the near-infrared region, which lead to large photocurrent density in agreement with the predictions of electromagnetic and transport computational models. The single nanowire photodetector shows a remarkable peak photoresponsivity of 0.57 A/W, comparable to large-area planar GaAs photodetectors on the market, and a high detectivity of 7.2 × 10(10) cm·Hz(1/2)/W at λ = 855 nm. This is promising for the design of a new generation of highly sensitive single nanowire photodetectors by controlling the optical mode confinement, bandgap, density of states, and electrode engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.