Abstract

Self-healing is one of the most important parts in self-organizing mobile communication network. It focuses on detecting the decline of service quality and finding out the cause of network anomalies and repairing it with high automation. Diagnosis is a particularly important task which identifies the fault cause of problematic cells or regions. To perform the diagnosis, this paper presents two modified ensemble classifiers by using Support Vector Machine (SVM) with different kernels, i.e., SVM with the radial basis function (RBF) kernel (RBFSVM in short) and SVM with the linear kernel (LSVM in short), as component classifier in Adaptive Boosting (AdaBoost), and we call the two ensemble classifiers as Adaptive Boosting based on RBFSVM (AdaBoostRBFSVM in short) and Adaptive Boosting based on linear kernel (AdaBoostLSVM in short). Different with previous AdaBoostSVM classifiers using weak component classifiers, in this paper, the performance of the classifiers is adaptively improved by using moderately accurate SVM classifiers (the training error is less than 50%). To solve the accuracy/diversity dilemma in AdaBoost and get good classification performance, the training error threshold is regulated to adjust the diversity of classifier, and the parameters of SVM (regularization parameter C and Gaussian width σ) are changed to control the accuracy of classifier. The accuracy and diversity will be well balanced through reasonable parameter adjustment strategy. Results show that the proposed approaches outperform individual SVM approaches and show good generalization performance. The AdaBoostLSVM classifier has higher accuracy and stability than LSVM classifier. Compared with RBFSVM, the undetected rate and diagnosis error rate of AdaBoostRBFSVM decrease slightly, but the false positive rate does reduce a lot. It means that the AdaBoostRBFSVM classifier is indeed available and can greatly reduce the number of normal class samples that have been wrongly classified. Therefore, the two ensemble classifiers based on the SVM component classifier can improve the generalization performance by reasonably adjusting the parameters. To set the parameter values of component classifiers in a more reasonable and effective way, genetic algorithm is introduced to find the set of parameter values for the best classification accuracy of AdaBoostSVM, and the new ensemble classifier is called AdaboostSVM based on genetic algorithm (GA-AdaboostSVM in short) (including AdaboostLSVM based on genetic algorithm and AdaboostRBFSVM based on genetic algorithm). Results show that GA-AdaboostSVM classifiers have a lower overall error than AdaboostSVM classifiers. Genetic algorithm could help to achieve a more optimal performance of the ensemble classifiers.

Highlights

  • Over the past few years, the wireless network has undergone great changes

  • The results show that the two proposed algorithms based on AdaBoostRBFSVM and AdaBoostLSVM can automatically diagnose different classes of network anomalies with high accuracy, low diagnosis error rate, low false positive rate, and low undetected rate

  • 4.3.5 Evaluation based on Genetic algorithm (GA)-AdaBoostSVM The difference between this algorithm and the traditional genetic algorithm is that the best parameter we find in this paper is a set of numerical values rather than a single numerical value

Read more

Summary

Introduction

Over the past few years, the wireless network has undergone great changes. The coexistence of 2G, 3G, LTE/LTE-A, and HetNet architecture makes the wireless network more and more complex. In this paper, the proposed AdaBoostRBFSVM method adaptively adjusts the value of σ in the RBFSVM component classifier to obtain a set of moderately accurate RBFSVMs for AdaBoost. Genetic algorithm is proposed to find the set of parameter values for the optimal performance of the ensemble classifiers. By using genetic algorithm to optimize parameters and control training error threshold, a good balance on accuracy/diversity will be achieved. The results show that the two proposed algorithms based on AdaBoostRBFSVM and AdaBoostLSVM can automatically diagnose different classes of network anomalies with high accuracy, low diagnosis error rate, low false positive rate, and low undetected rate. Proposed two modified ensemble learning algorithms using LSVM and RBFSVM as component classifier, i.e., AdaBoostLSVM and AdaBoostRBFSVM, to improve wireless network troubleshooting performance. Each column of the confusion matrix represents a prediction category of data, and each row represents the true category of data

Fault management based on Machine Learning
Proposed algorithm
Evaluation
Crossover
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call