Abstract
β-Ga2O3 nanostructures, including nanowires (NWs), nanosheets (NSHs), and nanorods (NRs), were synthesized using thermally dewetted Au nanoparticles as catalyst in a chemical vapor deposition process. The morphology of the as-grown β-Ga2O3 nanostructures depends strongly on the growth temperature and time. Successful growth of β-Ga2O3 NWs with lengths of 7–25 μm, NSHs, and NRs was achieved. It has been demonstrated that the vapor–liquid–solid mechanism governs the NW growth, and the vapor–solid mechanism occurs in the growth of NSHs and NRs. The X-ray diffraction analysis showed that the as-grown nanostructures were highly pure single-phase β-Ga2O3. The bandgap of the β-Ga2O3 nanostructures was determined to lie in the range of 4.68–4.74 eV. Characteristic Raman peaks were observed with a small blue and red shift, both of 1–3 cm−1, as compared with those from the bulk, indicating the presence of internal strain and defects in the as-grown β-Ga2O3 nanostructures. Strong photoluminescence emission in the UV-blue spectral region was obtained in the β-Ga2O3 nanostructures, regardless of their morphology. The UV (374–377 nm) emission is due to the intrinsic radiative recombination of self-trapped excitons present at the band edge. The strong blue (404–490 nm) emissions, consisting of five bands, are attributed to the presence of the complex defect states in the donor (VO) and acceptor (VGa or VGa–O). These β-Ga2O3 nanostructures are expected to have potential applications in optoelectronic devices such as tunable UV–Vis photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.