Abstract
As a result of the increased number of COVID-19 cases, Ensemble Machine Learning (EML) would be an effective tool for combatting this pandemic outbreak. An ensemble of classifiers can improve the performance of single machine learning (ML) classifiers, especially stacking-based ensemble learning. Stacking utilizes heterogeneous-base learners trained in parallel and combines their predictions using a meta-model to determine the final prediction results. However, building an ensemble often causes the model performance to decrease due to the increasing number of learners that are not being properly selected. Therefore, the goal of this paper is to develop and evaluate a generic, data-independent predictive method using stacked-based ensemble learning (GA-Stacking) optimized by a Genetic Algorithm (GA) for outbreak prediction and health decision aided processes. GA-Stacking utilizes five well-known classifiers, including Decision Tree (DT), Random Forest (RF), RIGID regression, Least Absolute Shrinkage and Selection Operator (LASSO), and eXtreme Gradient Boosting (XGBoost), at its first level. It also introduces GA to identify comparisons to forecast the number, combination, and trust of these base classifiers based on the Mean Squared Error (MSE) as a fitness function. At the second level of the stacked ensemble model, a Linear Regression (LR) classifier is used to produce the final prediction. The performance of the model was evaluated using a publicly available dataset from the Center for Systems Science and Engineering, Johns Hopkins University, which consisted of 10,722 data samples. The experimental results indicated that the GA-Stacking model achieved outstanding performance with an overall accuracy of 99.99% for the three selected countries. Furthermore, the proposed model achieved good performance when compared with existing bagging-based approaches. The proposed model can be used to predict the pandemic outbreak correctly and may be applied as a generic data-independent model to predict the epidemic trend for other countries when comparing preventive and control measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.