Abstract

In this work, analysis and optimization of sliding-mode controller parameters are treated, in order to govern a static power converter. In this case, an ac-dc boost power factor corrector is used; generally, these kinds of converters are applied to obtain a power factor near to unity. Advantage that the designed controller can give is the improvement of dynamic and static performances in cases of large disturbances. Simple sliding surface contains, in most cases, only one variable; in this study, analyzed surface includes two variables, which are continuous output voltage and rectified sinusoidal input current; the benefit of this surface is getting react against various disturbances, as be at the input power parameters, or the value of the load. The whole controller and converter is tested by simulation and experimentally for steady-state and transient responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.