Abstract

Computer-aided ECG analysis is very important for early diagnosis of heart diseases. Automated ECG analysis integrated with experts' opinions may provide more accurate and reliable results for detection of arrhythmia. In this study, a novel genetic algorithm-neural network (GA-NN) approach is proposed as a classifier, and compared with other classification methods. The GA-NN ap- proach was shown to perform better than alternative approaches (e.g. k-nn, SVM, na¨ ive Bayes, Bayesian networks) on the UCI Arrythmia and the novel TEPAS ECG datasets, where the GA resulted in a feature reduction of 95%. Based on the selected features, several rule extraction algorithms are applied to allow the interpretation of the classification results by the experts. In this application, the accuracy and interpretability of results are more important than processing speed. The results show that neural network based approaches benefit greatly from di- mensionality reduction, and by employing GA, we can train the NN reliably.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.