Abstract

In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA–Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call