Abstract
G9a and GLP are conserved protein methyltransferases that play key roles during mammalian development through mono- and dimethylation of histone H3 Lys 9 (H3K9me1/2), modifications associated with transcriptional repression. During embryogenesis, large H3K9me2 chromatin territories arise that have been proposed to reinforce lineage choice by affecting high-order chromatin structure. Here we report that in adult human hematopoietic stem and progenitor cells (HSPCs), H3K9me2 chromatin territories are absent in primitive cells and are formed de novo during lineage commitment. In committed HSPCs, G9a/GLP activity nucleates H3K9me2 marks at CpG islands and other genomic sites within genic regions, which then spread across most genic regions during differentiation. Immunofluorescence assays revealed the emergence of H3K9me2 nuclear speckles in committed HSPCs, consistent with progressive marking. Moreover, gene expression analysis indicated that G9a/GLP activity suppresses promiscuous transcription of lineage-affiliated genes and certain gene clusters, suggestive of regulation of HSPC chromatin structure. Remarkably, HSPCs continuously treated with UNC0638, a G9a/GLP small molecular inhibitor, better retain stem cell-like phenotypes and function during in vitro expansion. These results suggest that G9a/GLP activity promotes progressive H3K9me2 patterning during HSPC lineage specification and that its inhibition delays HSPC lineage commitment. They also inform clinical manipulation of donor-derived HSPCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.