Abstract

ABSTRACT We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise ratio spectra ( ) with resolving power R ∼ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carboni cities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP-no Group-II stars, based on their location in the Yoon–Beers diagram of absolute carbon abundance, A(C) versus [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars ( ), weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, metal-free supernova models reduces the inferred progenitor masses by factors of ∼2–3, and explosion energies by factors of ∼10–15, compared to those derived using previously claimed carbon-abundance estimates. There are certainly many more warm CEMP-no stars near the halo main-sequence turnoff that have been overlooked in past studies, directly impacting the derived frequencies of CEMP-no stars as a function of metallicity, a probe that provides important constraints on Galactic chemical evolution models, the initial mass function in the early universe, and first-star nucleosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call