Abstract

G-quadruplex (G4) structures are critical epigenetic regulatory elements, which usually form in guanine-rich regions in DNA. However, predicting the formation of G4 structures within living cells remains a challenge. Here, we present an ultra-robust machine learning method, G4Beacon, which utilizes the Gradient-Boosting Decision Tree (GBDT) algorithm, coupled with the ATAC-seq data and the surrounding sequences of in vitro G4s, to accurately predict the formation ability of these in vitro G4s in different cell types. As a result, our model achieved excellent performance even when the test set was extremely skewed. Besides this, G4Beacon can also identify the in vivo G4s of other cell lines precisely with the model built on a special cell line, regardless of the experimental techniques or platforms. Altogether, G4Beacon is an accurate, reliable, and easy-to-use method for the prediction of in vivo G4s of various cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.