Abstract

Glioblastoma multiforme (GBM) is the most lethal form of gliomas. New therapies are currently in development to tackle treatment limitations such as chemotherapy resistance. One mechanism of resistance may be the stress granules (SG) assembly, a stress-related cellular response that allows cells to recruit and protect mRNAs during stress. SG are composed of various proteins, being G3BP1 a core element that enucleates and results in SG assembly. Here, we aimed to evaluate the effects of inhibiting the G3PB1 expression in the chemotherapeutical-induced cell death of the U87 glioblastoma cell line. G3BP1 mRNA and protein expressionwere modulated with short-interference RNA(siRNA). The viability of U87 cells afterBortezomib (BZM), a proteasome inhibitor, and Temozolomide (TMZ), an alkylating agent,was assessed by MTT assay. Apoptosis was evaluated by staining cells with Annexin-V/7-AAD and analyzing by flow cytometry. Caspase-3 activation was evaluated by immunoblotting. The chorioallantoic membrane in vivo assay was used to evaluate angiogenesis. When G3BP1 was knocked-down, theSG assembly was reduced and the BZM-treated cells, but not TMZ-treated cells, had a significant increase in the apoptotic response. Corroborating this data, we observed increased Caspase-3 activation in the BZM-treated and G3BP1-knocked-down cells when compared to vehicle-treated and scramble-transfected cells. Worth mentioning, the conditioned culture medium of G3BP1-knocked-down BZM-treated cells inhibited angiogenesis when compared to controls. Our data suggest G3BP1 knockdown diminishes SG formation and stimulates BZM-induced apoptosis of U87 cells in vitro, in addition to inhibiting glioblastoma-induced angiogenesis in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.