Abstract

Although rs763361, which causes a nonsynonymous glycine-to-serine mutation at residue 307 (G307S mutation) of the DNAX accessory molecule-1 (DNAM-1) immunoreceptor, is a single-nucleotide polymorphism associated with autoimmune disease susceptibility, little is known about how the single-nucleotide polymorphism is involved in pathogenesis. In this study, we established human CD4+ T cell transfectants stably expressing wild-type (WT) or G307S DNAM-1 and showed that the costimulatory signal from G307S DNAM-1 induced greater proinflammatory cytokine production and cell proliferation than that from wild-type DNAM-1. The G307S mutation also enhanced the recruitment of the tyrosine kinase Lck and augmented p-Tyr322 of DNAM-1. We also established a mouse myelin Ag-specific CD4+ T cell transfectant stably expressing the chimeric DNAM-1 (chDNAM-1) consisting of the extracellular, transmembrane, and a part of intracellular regions of mouse DNAM-1 (residues 1-285) fused with the part of the intracellular region (residues 286-336) of human WT or G307S chDNAM-1. Adoptive transfer of the mouse T cell transfectant expressing the G307S chDNAM-1 into mice exacerbated experimental autoimmune encephalomyelitis compared with the transfer of cells expressing the WT chDNAM-1. These findings suggest that rs763361 is a gain-of-function mutation that enhances DNAM-1-mediated costimulatory signaling for proinflammatory responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call