Abstract

Characterization of radio environment is an important field of research that helps to analyze the limiting features of the propagation environment and leads to develop a realistic channel model. This paper proposes an appropriate multipath channel model for various ground-to-air (G2A) communication scenarios. An intensive review of the existing literature on A2G/G2A channel models is presented along with a critical analysis with appropriate comments wherever needed. It is observed that most of the research literature supposedly model G2A channels interchangeably in the same manner as that of land mobile communication links. G2A communications systems are generally equipped with directional antennas for dedicated coverage to flying aircrafts that benefits in increasing range and signal strength while restraining interfering signals coming through scattering objects around ground station (G). This research analyzes G2A multipath channel and thus proposes a geometrically-based physical G2A multipath channel model. The proposed channel model clearly justifies the existence of multipath environment in G2A communication due to the existence of aircrafts in the vicinity of the intended aircraft. This model is based on a three-dimensional confocal prolate spheroids and uses the principle of single-bounce multipath geometry. Moreover, the model gives an insight to analyze multipath multiuser G2A communication in wide-beam and narrow-beam communication link scenarios. This model is equally applicable to the networks of passenger aircrafts, flocks of jet fighters and mesh of UAV drones. This model can be used to analyze the performance of high data-rate communication links with high mobile speeds over sparsely distributed multipath channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call