Abstract

In this article, we present a method to perform G <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup> -continuous blends between a differentiable superquadric of revolution and a plane or a sphere using Dupin cyclides. These blends are patches delimited by four lines of curvature. They allow to avoid parameterization problems that may occur when parametric surfaces are used. Rational quadratic Bezier curves are used to approximate the principal circles of the Dupin cyclide blends and thus a complex 3D problem is now reduced to a simpler 2D problem. We present the necessary conditions to be satisfied to create the blending patches and illustrate our approach by a number of superellipsoid/plane and superellipsoid/sphere blending examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.