Abstract

BackgroundHIV-2 is endemic in West Africa and has spread throughout Europe. However, the alternatives for HIV-2-infected patients are more limited than for HIV-1. Raltegravir, an integrase inhibitor, is active against wild-type HIV-2, with a susceptibility to this drug similar to that of HIV-1, and is therefore a promising option for use in the treatment of HIV-2-infected patients. Recent studies have shown that HIV-2 resistance to raltegravir involves one of three resistance mutations, N155H, Q148R/H and Y143C, previously identified as resistance determinants in the HIV-1 integrase coding sequence. The resistance of HIV-1 IN has been confirmed in vitro for mutated enzymes harboring these mutations, but no such confirmation has yet been obtained for HIV-2.ResultsThe integrase coding sequence was amplified from plasma samples collected from ten patients infected with HIV-2 viruses, of whom three RAL-naïve and seven on RAL-based treatment at the time of virological failure. The genomes of the resistant strains were cloned and three patterns involving N155H, G140S/Q148R or Y143C mutations were identified. Study of the susceptibility of integrases, either amplified from clinical isolates or obtained by mutagenesis demonstrated that mutations at positions 155 and 148 render the integrase resistant to RAL. The G140S mutation conferred little resistance, but compensated for the catalytic defect due to the Q148R mutation. Conversely, Y143C alone did not confer resistance to RAL unless E92Q is also present. Furthermore, the introduction of the Y143C mutation into the N155H resistant background decreased the resistance level of enzymes containing the N155H mutation.ConclusionThis study confirms that HIV-2 resistance to RAL is due to the N155H, G140S/Q148R or E92Q/Y143C mutations. The N155H and G140S/Q148R mutations make similar contributions to resistance in both HIV-1 and HIV-2, but Y143C is not sufficient to account for the resistance of HIV-2 genomes harboring this mutation. For Y143C to confer resistance in vitro, it must be accompanied by E92Q, which therefore plays a more important role in the HIV-2 context than in the HIV-1 context. Finally, the Y143C mutation counteracts the resistance conferred by the N155H mutation, probably accounting for the lack of detection of these mutations together in a single genome.

Highlights

  • HIV-2 is endemic in West Africa and has spread throughout Europe

  • This study confirms that HIV-2 resistance to RAL is due to the N155H, G140S/Q148R or E92Q/Y143C mutations

  • The N155H and G140S/Q148R mutations make similar contributions to resistance in both HIV-1 and HIV2, but Y143C is not sufficient to account for the resistance of HIV-2 genomes harboring this mutation

Read more

Summary

Introduction

HIV-2 is endemic in West Africa and has spread throughout Europe. the alternatives for HIV-2-infected patients are more limited than for HIV-1. Raltegravir, an integrase inhibitor, is active against wild-type HIV-2, with a susceptibility to this drug similar to that of HIV-1, and is a promising option for use in the treatment of HIV-2-infected patients. The development of seven different classes of antiretroviral drugs has led to the establishment of highly active treatments that have had a profound effect on the morbidity been suggested that the genetic barrier is weaker in HIV-2, potentially resulting in the more rapid emergence of resistance to other PIs [8,9]. RAL has a rapid and sustained antiretroviral effect in patients with advanced HIV-1 infection [13,14] As it has a different mechanism of action, RAL is effective against viruses resistant to other classes of antiretroviral drugs [13]. HIV-1 and HIV-2 IN nucleotide sequences are only 40% identical, RAL is active against wild-type HIV-2, which has a phenotypic susceptibility to this drug similar to that of HIV-1 [11,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call